SVĚTOVÝ, EVROPSKÝ A ČESKÝ AUTOMOBILOVÝ PRŮMYSL A TRH S AUTOMOBILY :: Šaroch a kol.
Johlitz, M. Zum Alterungsverhalten von Polymeren: Experimentell gestützte, thermo-chemomechanische Modellbildung und numerische Simulation (Habilitation). Universität der Bundeswehr München, München, 2015. Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.-C.; Zerhouni, N. Particle Filter-Based Prognostics: Review, Discussion and Perspectives. Mechanical Systems and Signal Processing, 2016. 72–73, pp. 2–31. Kan, M. S.; Tan, A. C.C.; Mathew, J. A Review on Prognostic Techniques for non stationary and nonlinear Rotating Systems. Mechanical Systems and Signal Processing , 2015, 62–63, pp.1–20. Kaul, T.; Bender, A.; Sextro, W. Digital Twin for Reliability Analysis During Design and Operation of Mechatronic Systems. In M. Beer & E. Zio (Chairs), European Safety and Reliability Conference. Symposium conducted at the meeting of ESRA, Hannover . 2019. Kimotho, J. K. Development and performance evaluation of prognostic approaches for technical systems. Schriften des Lehrstuhls für Dynamik und Mechatronik : Vol. 4. Paderborn: Shaker Verlag, 2016. Koenen, J. F. Ein Beitrag zur Beherrschung von Unsicherheit in Lastmonitoring-Systemen (Dissertation). Universität Siegen, Siegen 2016. Krupa, M. Technická prognostika v kontextu prediktivní údržby. AUTOMA, 2/2012, pp. 16–19. Kulling, A.; (Betreuerin) Bender, A. Entwicklung hybrider Prognosemethoden für die Zustandsüberwachung (unveröffentlichte Masterarbeit). Universität Paderborn, Paderborn. 2019. Kwon, D.; Hodkiewicz, M.R.; Fan, J.; Shibutani, T.; Pecht, M.G. IoT-Based Prognostics and Systems Health Management for Industrial Applications. IEEE Access 2016, 4, 3659–3670, DOI: 10.1109/ACCESS.2016.2587754. Laayouj, N.; Jamouli, H. Prognosis of Degradation based on a new dynamic Method for Remaining Useful Life Prediction. Journal of Quality in Maintenance Engineering, 2017, 23(2), pp. 239–255. Lebold, M.; Reichard, K.; Byington, C.S.; Orsagh, R. OSA-CBM Architecture Development with Emphasis on XML Implementations. In Proceedings of the MAINTENANCE AND RELIABILITY CONFERENCE ; 2002. Li, Z.; Wang, K.; He, Y. Industry 4.0 - Potentials for Predictive Maintenance. In Proceedings of the International Workshop of Advanced Manufacturing and Automation (IWAMA 2016 ); Atlantis Press, 2016; pp. 42–46. Liao, L.; Kottig, F. Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction. IEEE Transactions on Reliability, 63(1), 191–207. Luo, J.; Namburu, M.; Pattipati, K.; Qiauio, L.: Model-based prognostictechniques. Autotestcon 2003, IEEE SystemsReadiness Technology Conference, Proceedings , September 2003, pp. 330–340, ISSN1080-7725, print ISBN 0-7803-7837-7.
206
Made with FlippingBook Online newsletter creator