SVĚTOVÝ, EVROPSKÝ A ČESKÝ AUTOMOBILOVÝ PRŮMYSL A TRH S AUTOMOBILY :: Šaroch a kol.

Saltelli, A., et al. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models . 1. vyd. Chichester: Wiley, 2008. Sankararaman, S.; Goebel, K. Uncertainty in Prognostics and Systems Health Management. International Journal of Prognostics and Health Management, 2015, 6, 1–14. Saxena, A.; Cela, Y.A., J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M.: Metrics for evaluating performance of prognostic techniques . International Conference on Prognostics and Health Management 2008, Denver, CO, US, 6–9 October 2008, pp. 1–11, ISBN 978-1-4244-1935-7. Shah, D., Thaker, M. A Review of Time Series Forecasting Methods. International Journal of Research and Analytical Reviews . 2024. 11. 749. 10.1729/Journal.38816. Shoorkand, H.D., Nourelfath, M., Hajji, A. A hybrid deep learning approach to integrate predictive maintenance and production planning for multi-state systems. Journal of Manufacturing Systems . 74. 2024. pp. 397–410. Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Annals , 2017, 66(1), 141–144. Schwabacher, M. A.: A Survey of Data – Driven Prognostics . American Institute of Aeronautics and Astronautics AIAA-2005–7002, September 2005. pp. 1–5. Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Comput Ind 2020, 123 , 103335, DOI: 10.1016/j.compind.2020.103335. Stark, R.; Thoben, K.D.; Gerhard, D.; Hick, H.; Kirchner, E. Digitaler Zwilling: WiGeP-Positionspapier. 2020. Retrieved from Wissenschaftliche Gesellschaft für Produktentwicklung website: http://www.wigep.de/index.php?id=14&L=%22 Su, X.; Wang, S.; Pecht, M.; Zhao, L.; Ye, Z. Interacting Multiple Model Particle Filter for Prognostics of Lithium-Ion Batteries. Microelectronics Reliability , 2017, 70, 59–69. Sung, H. J.: Optimal maintenance of a multi-unit system under dependencies. A thesispresented to the academic faculty. Georgia,Georgia Institute of Technology, December 2008. Dostupne z Posledni aktualizace:16. 4. 2010. Tang, W.; Flynn, D.; Brown, K.; Valentin, R.; Zhao, X. The Design of a Fusion Prognostic Model and Health Management System for Subsea Power Cables. 2019. In Oceans 2019 MTS/IEEE SEATTLE (pp. 1–6). IEEE. https://doi.org/10.23919/ OCEANS40490.2019.8962816 Tran Anh, D.; Dąbrowski, K.; Skrzypek. K. The Predictive Maintenance Concept in The Maintenance Department Of The “Industry 4.0” Production Enterprise. Foundations of Management , Vol. 10 (2018), ISSN 2080-7279 DOI: 10.2478/fman 2018-0022 Vachtsevanos, G. J. Intelligent fault diagnosis and prognosis for engineering systems. Hoboken, N. J: Wiley. 2006.

208

Made with FlippingBook Online newsletter creator