UMĚLÁ INTELIGENCE V AUTOMOTIVE / David et al.

[3.34] HUO, J., CHAN, F.T.S., LEE, C.K.M., STRANDHAGEN, J.O., NIU, B. Smart control of the assembly process with a fuzzy control system in the context of Industry 4.0. Advanced Engineering Informatics . 43, 2020. 101031. https:// doi.org/10.1016/j.aei.2019.101031. [3.35] TOADER, F. A. Production scheduling in flexible manufacturing systems: a state of the art survey. Journal of Electrical Engineering, Electronics, Control and Computer Science . 3(1), 2017. pp. 1–6. [3.36] CIOFFI, R.; TRAVAGLIONI, M.; PISCITELLI, G.; PETRILLO, A.; DE FE LICE, F. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability . 12(2), 2020. 492. https://doi.org/10.3390/su12020492 [3.37] ALTENMÜLLER, T., STÜKER, T., WASCHNECK, B., KUHNLE, A., LANZA, G. Reinforcement learning for an intelligent and autonomous pro duction control of complex job-shops under time constraints. Production Engi neering . 14(3), 2020. pp. 319–328. https://doi.org/10.1007/s11740-020-00967-8 [3.38] ASHIMA, R., HALEEM, A., BAHL, S., NANDAN, D., JAVAID, M. Auto mation of AM Via IoT towards implementation of e-logistics in supply chain for Industry 4.0. Recent Advances in Mechanical Engineering: Select Procee dings of ICRAMERD 2021. Singapore: Springer Nature Singapore, 2022. pp. 181–189. [3.39] OH, J., JEONG, B. Tactical supply planning in smart manufacturing sup ply chain. Robotics and Computer-Integrated Manufacturing . 55, Part B. 2019. pp. 217–233. https://doi.org/10.1016/j.rcim.2018.04.003 [3.40] CHENG, J. C. P., CHEN, W., CHEN, K., WANG, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Automation in Construction . 112, 2020. 103087. https://doi.org/10.1016/j.autcon.2020.103087fd [3.41] DALZOCHIO, J., KUNST, R., PIGNATON, E., BINOTTO, A., SANYAL, S., FAVILLA, J., BARBOSA, J. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in In dustry . 123, 2020. 103298. https://doi.org/10.1016/j.compind.2020.103298 [3.42] KUSHWAHA, S., BAHL, S., BAGHA, A.K., PARMAR, K.S., JAVAID, M., HALEEM, A., SINGH, R. P. Significant applications of machine learning for COVID-19 pandemic. Journal of Industrial Integration and Management . 5(04), 2020. pp. 453–479. [3.43] SAJID, S., HALEEM, A., BAHL, S., JAVAID, M., GOYAL, T., MITTAL, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings. 45(6), 2021. https://doi. org/10.1016/j.matpr.2021.01.357

139

Made with FlippingBook - Share PDF online